r Application

GeoSpatial Services

B Ryan Kiefer

Purpose

« Create a Model Builder application which
replicates a custom application
developed in ArcODbjects for pipeline
Integrity management

— Creates a Linear Route Event necessary for
displaying pipe volume

Introduction

Geoprocessing

— Geoprocessing is the processing of geographic information, one
of the basic functions of a GIS. It provides a way to create new
iInformation by applying an operation to existing data. Any
alteration or information extraction you want to perform on your
data involves a geoprocessing task. It can be a simple task,
such as converting geographic data to a different format, or it
can involve multiple tasks performed in sequence, such as those
that clip, select, and then intersect datasets.

(ESRI Desktop Help)

Geoprocessing (Continued)

— Within ArcGIS, you can perform geoprocessing task
In a number of ways:

 Build and run a model that runs a sequence of
geoprocessing tools in your work flow. Alter parameter
values then rerun the model with a single click.

e Create and run a script that runs geoprocessing tools. Use
system batch processing scripts for repetitive tasks, such as
those that run the same tool on multiple inputs, or create your
own scripts that run geoprocessing tools.

(ESRI Desktop Help)

Python

e Python is an Object Oriented Scripting language
supported by ESRI for use in Model Builder Scripting

 Why Python?
— Productivity
 Reduce code by 1/3to 1/5
— Integration

* “Python code can invoke C and C++ libraries, can be called from C
and C++ libraries, can integrate with Java components, can
communicate over COM, CORBA, and .NET, and can interact over
networks with interfaces like SOAP and XMP-RPC”

Learning Python, O’Reily Press
— Open Source
* Free

Ibox/Toolboxes/Data Management Tools.tbx")
cToolbox/Toolboxes/Analysis Tools.tbx")

near_Buffer.shp"

="Point_Input"
_Class = "Point_Input"
"Point_Input"

.Buffer_analysis(Linear, Linear_Buffer, "500.000000 Meters", "FULL", "ROUND", "ALL","")

Process: Select Layer By Location...
gp.SelectLayerByLocation_management(Points, "INTERSECT", Linear_Buffer, "", "NEW_SELECTION",)

Process: Add Field...
gp.AddField_management(Output_Layer_Name, "INTERSECT", "TEXT", ", "", ", "", "NON_NULLABLE", "NON_REQUIRED", "",)

. # Process: Calculate Field...
. gp.CalculateField_management(Output_Feature_Class, "INTERSECT", ""TRUE"",)

. ArcODbjects VBA

o Perl and Java

lons with Objects

Imited to Model Builder Object Model
Diagram

Cons (Continued)

— Limited with Objects (Cont...)

e Have to create workarounds using only the tools
and Objects that are accessible in the
Geoprocessor

— In ArcObjects you create your own path
— In Model Builder you choose from the given paths

e Can create custom Model Builder tools in VB
though programmatically more difficult

— User forum
e Less information found in the ESRI User Forum

The first process creates the "empty”
new feature class for the Append process.

CEYERE Y

le > X 1+ 8]

Layers to be

Merge to new Layer

Thig in & madal toal that
APPENDS any numbar af
input layers tegsther in
£reate & new ayer that
doasnt avesdy snis. X i
simila o the ArcGES Bx
MERGE 300l Sund in tha.
GRnpracessng wzand A
rice foature of the AFFEND
e0Cess i that the input
finlds do not nocessanly
s ba match in ordor far the
FrocEss to work,

=

Merged

Qutput

Append Features

New
Output
Feature

Output

Create
Feature

Feature Class

Schema
For Output

Output Directory or
Geodatabase Workspace

Takes the inputs for the APPEND and merges them
into the result of the Create Feature Class process

Model Created by ESRI

Pros

e Code Reduction

— Application created using ArcObjects was
over 25 pages of code

— Application in Model Builder used the
Geoprocessing tools and two scripts which
had less than 250 lines of code each

e Locate Features Along Routes
e Time
— Less code = less time

Pros (Continued)

e Visual Reference

— Model Builder allows a visual flow through
processes of an application
— Easier to grasp flow of program
— Easier to change the model using tools visually
— Easier to share workflow

— Great for beginning application developers

ality to Python

Demo....

Input Route Layer

Input User Specified Interval
Input Benchmarks

Input Raster Layer (DEM)
Input Pipe Diameter (Inches)

Final Output: Linear Route Event Layer

—s=— Elevation

S S R 2 S O R S O &P

Distance along Pipe (meters)

Locate Points Along Routes

Public Sub PointsOnRoute(pFClass As IFeatureClass)

Dim newWSP As IWorkspace
Dim newFWS As IFeatureWorkspace
Dim newWSF As IWorkspaceFactory

Set newWSF = New ShapefileWorkspaceFactory
Set newWSP = newWSF.OpenFromFile(savePath, 0)
Set newFWS = newWSP

Dim pTempDS As IDataset
Set pTempDS = newWSP

Dim pOutDSN As IDatasetName
Set pOutDSN = New tableName

Dim pOutWSN As IWorkspaceName

Set pOutWSN = pTempDS.FullName

Set pOutDSN.WorkspaceName = pOutWSN
pOutDSN.Name = “Event_1"

Dim pDS As |IDataset
Dim pNameRt As IName
Dim pRMLName As IRouteLocatorName
Set pDS = pFClass1
Set pNameRt = pDS.FullName
Set pRMLName = New RouteMeasureLocatorName
With pRMLName
Set .RouteFeatureClassName = pNameRt
.RoutelDFieldName = “RID"
.RoutelDIsUnique = True
.RouteMeasureUnit = esriFeet
".RouteWhereClause ="" '+++ used to limit the number of routes
End With

Dim pRtProp As IRouteEventProperties2
Dim pRMPtProp As IRouteMeasurePointProperties2
Set pRtProp = New RouteMeasurePointProperties

With pRtProp

.EventMeasureUnit = esriUnknownUnits

.EventRoutelDFieldName = “RID"

".LateralOffsetFieldName = "offset"

.AddErrorField = True ‘add field for locating errors

.ErrorFieldName = "LOC_ERROR" 'specify name for the locating errors field
End With

'+++ |[RouteMeasurePointProperties2 is used to include an angle field to the
route event source.

'+++ The angle field can be used to cartagrophical rotate point event
symbology.
Set pRMPtProp = pRtProp
With pRMPtProp
.MeasureFieldName = "DISTANCE"
.AddAngleField = True
.AngleFieldName ="LOC_ANGLE"
.AsPointFeature = True ‘point events shape will be of type Point.
Multipoint if False
'the angle normal to the digitize direction. Will
be tangent if False

.NormalAngle = True

.ComplementAngle = False
End With

Dim pTempName As IName
Set pTempName = pRMLName

Dim pRouteLocator As IRouteLocator
Set pRouteLocator = pTempName.Open

Set pFeatLayerValves = pLayerValves

Dim pTempFClass1 As IFeatureClass

Set pTempFClassl = pFeatLayerValves.FeatureClass
Dim pRouteLocatorOps As IRouteLocatorOperations
Set pRouteLocatorOps = New RouteLocatorOperations

With pRouteLocatorOps
Set .InputFeatureClass = pTempFClass1
Set .RouteLocator = pRouteLocator

End With

Set pTable = pRouteLocatorOps.LocatePointFeatures(0.01, False, pRtProp,
False, pOutDSN, "", Nothing)

'‘add table to TOC

Call addfields(pTable)
Call AddToMap(pTable)

End Sub

Developed by ESRI

Luélte

Features
Along Boutes

Input Features

Iﬁ Benchmark

KN

Input Route Features
[Mew_Route_ATE

[EN

Route Identifier Field
[roUTE

Kl

Search Radius

0 IMelels

Kl

Cutput Event Table
[C:bempE vent_T able.dbf

Qutput Event Table Properties
Fioute Identifier Field

RID |
Ewent Type
JPaINT =

Measure Field
[oisTaNCE

L]

To-Measure Field

Kl

¥ Keep only the closest route location (optional)
¥ Include distance fizld an output tabls (optional)
[¥ Keep zero length line events {optional)

¥ Include all fields from input {optional)

@) Help :I

Locate Features
Along Routes

Computes the intersection of
input features (point, line or
polygon) and route features
and writes the route and
measure information to a
new event table.

o

oK I Cancel Apply

Show Help > |

Back

rough all fields

print oneField.Name
oneField = All_Fields.Next()

Back

cts (from Layer in TOC)

ic Sub GetFields()
Dim pMxdoc As IMxDocument
Set pMxdoc = Application.Document

Dim pMap As IMap
Set pMap = pMxdoc.FocusMap

Dim pFlayer As IFeatureLayer
Set pFlayer = pMap.Layer(0)

Dim pFclass As IFeatureClass
Set pFclass = pFlayer.FeatureClass

Dim pFields As IFields
Set pFields = pFclass.Fields

Dim pField As IField
Dim i As Integer

‘Loop through all fields
Fori=0 To (pFields.FieldCount — 1)
Set pField = pFields.Field(i)
MsgBox pField.Name
Next

End Sub

