
Model Builder Application

GeoSpatial Services
Ryan Kiefer

Purpose

• Create a Model Builder application which
replicates a custom application
developed in ArcObjects for pipeline
integrity management

– Creates a Linear Route Event necessary for
displaying pipe volume

Introduction
• Geoprocessing

– Geoprocessing is the processing of geographic information, one
of the basic functions of a GIS. It provides a way to create new
information by applying an operation to existing data. Any
alteration or information extraction you want to perform on your
data involves a geoprocessing task. It can be a simple task,
such as converting geographic data to a different format, or it
can involve multiple tasks performed in sequence, such as those
that clip, select, and then intersect datasets.

(ESRI Desktop Help)

Geoprocessing (Continued)
– Within ArcGIS, you can perform geoprocessing task

in a number of ways:

• Build and run a model that runs a sequence of
geoprocessing tools in your work flow. Alter parameter
values then rerun the model with a single click.

• Create and run a script that runs geoprocessing tools. Use
system batch processing scripts for repetitive tasks, such as
those that run the same tool on multiple inputs, or create your
own scripts that run geoprocessing tools.

(ESRI Desktop Help)

Model Builder

Tools

Model Inputs
Intermediate Output

Final
Output

Python
• Python is an Object Oriented Scripting language

supported by ESRI for use in Model Builder Scripting

• Why Python?
– Productivity

• Reduce code by 1/3 to 1/5
– Integration

• “Python code can invoke C and C++ libraries, can be called from C
and C++ libraries, can integrate with Java components, can
communicate over COM, CORBA, and .NET, and can interact over
networks with interfaces like SOAP and XMP-RPC”

Learning Python, O’Reily Press
– Open Source

• Free

Python Example
• # ---
• # BufferAnalysis.py
• # (generated by ArcGIS/ModelBuilder)
• # ---

• # Import system modules
• import sys, string, os, win32com.client

• # Create the Geoprocessor object
• gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")

• # Set the necessary product code
• gp.SetProduct("ArcInfo")

• # Load required toolboxes...
• gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx")
• gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Analysis Tools.tbx")

• # Local variables...
• Linear = "Linear"
• Linear_Buffer = "C:/temp/Linear_Buffer.shp"
• Points = "Point_Input"
• Output_Layer_Name = "Point_Input"
• Output_Feature_Class = "Point_Input"
• OutputLayer = "Point_Input"

• # Process: Buffer...
• gp.Buffer_analysis(Linear, Linear_Buffer, "500.000000 Meters", "FULL", "ROUND", "ALL", "")

• # Process: Select Layer By Location...
• gp.SelectLayerByLocation_management(Points, "INTERSECT", Linear_Buffer, "", "NEW_SELECTION",)

• # Process: Add Field...
• gp.AddField_management(Output_Layer_Name, "INTERSECT", "TEXT", "", "", "", "", "NON_NULLABLE", "NON_REQUIRED", "",)

• # Process: Calculate Field...
• gp.CalculateField_management(Output_Feature_Class, "INTERSECT", ""TRUE"",)

Model Builder vs. ArcObjects VBA

Cons

• Different Language
– Language similar to Perl and Java

• Differences in syntax
• Case sensitive

• Limitations with Objects
– Limited to Model Builder Object Model

Diagram

Cons (Continued)

– Limited with Objects (Cont…)
• Have to create workarounds using only the tools

and Objects that are accessible in the
Geoprocessor

– In ArcObjects you create your own path
– In Model Builder you choose from the given paths

• Can create custom Model Builder tools in VB
though programmatically more difficult

– User forum
• Less information found in the ESRI User Forum

Cons (Continued)

• NO “Merge”

Model Created by ESRI

Bugs

• Extract Values to Point (Tool)

Pros

• Code Reduction
– Application created using ArcObjects was

over 25 pages of code
– Application in Model Builder used the

Geoprocessing tools and two scripts which
had less than 250 lines of code each

• Locate Features Along Routes

• Time
– Less code = less time

Pros (Continued)

• Visual Reference
– Model Builder allows a visual flow through

processes of an application
– Easier to grasp flow of program
– Easier to change the model using tools visually
– Easier to share workflow

– Great for beginning application developers

Pros (Continued)

• Greater intrinsic functionality to Python
– Arrays
– Strings

Demo….

• Input Route Layer
• Input User Specified Interval
• Input Benchmarks
• Input Raster Layer (DEM)
• Input Pipe Diameter (Inches)

• Final Output: Linear Route Event Layer

Acknowledgments

• Dave Hajoglou
• Elizabeth McCord
• Chad Richtman
• Patrick Thorsel
• Lane Urtel

Future Analysis

Distance along Pipe (meters)

Elevation

360.00000000

365.00000000

370.00000000

375.00000000

380.00000000

385.00000000

390.00000000

50
.00

15
0.0

0
23

5.1
2

30
0.0

0
40

0.0
0

45
0.0

0
55

0.0
0

60
0.0

0
70

0.0
0

75
0.0

0
85

0.0
0

95
0.0

0
10

35
.52

11
00

.00
12

00
.00

13
00

.00
14

00
.00

14
84

.04
15

50
.00

16
50

.00
17

00
.00

Elevation

Spill Volume

Questions?

Locate Points Along Routes
Public Sub PointsOnRoute(pFClass As IFeatureClass)

Dim newWSP As IWorkspace
Dim newFWS As IFeatureWorkspace
Dim newWSF As IWorkspaceFactory

Set newWSF = New ShapefileWorkspaceFactory
Set newWSP = newWSF.OpenFromFile(savePath, 0)
Set newFWS = newWSP

Dim pTempDS As IDataset
Set pTempDS = newWSP

Dim pOutDSN As IDatasetName
Set pOutDSN = New tableName

Dim pOutWSN As IWorkspaceName
Set pOutWSN = pTempDS.FullName
Set pOutDSN.WorkspaceName = pOutWSN
pOutDSN.Name = “Event_1"

Dim pDS As IDataset
Dim pNameRt As IName
Dim pRMLName As IRouteLocatorName
Set pDS = pFClass1
Set pNameRt = pDS.FullName
Set pRMLName = New RouteMeasureLocatorName
With pRMLName

Set .RouteFeatureClassName = pNameRt
.RouteIDFieldName = “RID"
.RouteIDIsUnique = True
.RouteMeasureUnit = esriFeet
'.RouteWhereClause = "" '+++ used to limit the number of routes

End With

Dim pRtProp As IRouteEventProperties2
Dim pRMPtProp As IRouteMeasurePointProperties2
Set pRtProp = New RouteMeasurePointProperties

With pRtProp
.EventMeasureUnit = esriUnknownUnits
.EventRouteIDFieldName = “RID"
'.LateralOffsetFieldName = "offset"
.AddErrorField = True 'add field for locating errors
.ErrorFieldName = "LOC_ERROR" 'specify name for the locating errors field

End With

'+++ IRouteMeasurePointProperties2 is used to include an angle field to the
route event source.

'+++ The angle field can be used to cartagrophical rotate point event
symbology.

Set pRMPtProp = pRtProp
With pRMPtProp

.MeasureFieldName = "DISTANCE"

.AddAngleField = True

.AngleFieldName = "LOC_ANGLE"

.AsPointFeature = True 'point events shape will be of type Point.
Multipoint if False

.NormalAngle = True 'the angle normal to the digitize direction. Will
be tangent if False

.ComplementAngle = False
End With

Dim pTempName As IName
Set pTempName = pRMLName

Dim pRouteLocator As IRouteLocator
Set pRouteLocator = pTempName.Open

Set pFeatLayerValves = pLayerValves
Dim pTempFClass1 As IFeatureClass
Set pTempFClass1 = pFeatLayerValves.FeatureClass
Dim pRouteLocatorOps As IRouteLocatorOperations
Set pRouteLocatorOps = New RouteLocatorOperations

With pRouteLocatorOps
Set .InputFeatureClass = pTempFClass1
Set .RouteLocator = pRouteLocator

End With

Set pTable = pRouteLocatorOps.LocatePointFeatures(0.01, False, pRtProp,
False, pOutDSN, "", Nothing)

'add table to TOC

Call addfields(pTable)
Call AddToMap(pTable)

End Sub

Developed by ESRI

Locate Points Along Routes

Entire sequence of ArcObjects code
now in a convenient Geoprocessing
Tool

Back

Syntax
• Python

#Import standard library modules
import win32com.client, sys, os

#Create the Geoprocessor object
gp =

win32com.client.Dispatch("esriGeoprocessin
g.GpDispatch.1")

inFc = sys.argv[1] #Pass in argument for
FeatureLayer input

All_Fields = gp.ListFields(inFC)
oneField = All_Fields.Next()

#Loop through all fields
while oneField:

print oneField.Name
oneField = All_Fields.Next()

• ArcObjects (from Layer in TOC)
Public Sub GetFields()

Dim pMxdoc As IMxDocument
Set pMxdoc = Application.Document

Dim pMap As IMap
Set pMap = pMxdoc.FocusMap

Dim pFlayer As IFeatureLayer
Set pFlayer = pMap.Layer(0)

Dim pFclass As IFeatureClass
Set pFclass = pFlayer.FeatureClass

Dim pFields As IFields
Set pFields = pFclass.Fields

Dim pField As IField
Dim i As Integer

‘Loop through all fields
For i = 0 To (pFields.FieldCount – 1)

Set pField = pFields.Field(i)
MsgBox pField.Name

Next

End SubBack

